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Sylver Coinage Game 

In this paper, we will discuss the rules and strategies of the Sylver Coinage game along 
with implications of discovered theorems and corollaries.  In particular, discussion about what 
moves provide a player with a winning strategy.  Examples of gameplay will be provided along 
with proofs for all theorems and formulas.   We will conclude with discussion for future 
research into unknown values of gameplay. 

James Joseph Sylvester posed the following question: A man possesses a large quantity 
of stamps of only two denominations: 5-cent stamps and 17-cent stamps.  What is the largest 
amount of postage which the man cannot make up with a combination of these stamps?  
Without much effort, we can simply list integers until we find five consecutive that he can 
obtain meaning that he can obtain all values higher than those five.  In this case, he can make 
up 64, 65, 66, 67 and 68 but not 63.  Therefore 63 is the largest amount that he cannot make up 
using 5-cent and 17-cent stamps.  Note that he can obtain any number greater than 68 by 
adding the necessary amount of 5-cent stamps to one of the values between 64 and 68.  Later 
we will discuss how to derive a general formula for this situation to help in situations where the 
numbers are too large to list. 

  First let’s look at a game with a similar concept created by John Horton Conway that he 
named Sylver Coinage in honor of J.J. Sylvester.  Two players take turns naming positive 
integers that are not attainable from the previous numbers chosen.  The player that is forced to 
say 1 loses.  Let’s examine a basic game:  Player 1 names #4.  Player 2 cannot say any multiple 
of 4 so they choose #5.  Using similar logic as our stamp problem above, we find the largest 
unattainable number is #11.  In fact we can represent all the unattainable values visually using 
the following simple 4	𝑥	5 chart: 

0 4 8 12 16 
1 5 9 13 17 
2 6 10 14 18 
3 7 11 15 19 

 

By using 4 rows, once a number is found to be attainable in a row every number 
following in that row is also attainable by adding some multiple of 4.  This way we can see that 
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1, 2, 3, 6, 7, and 11 are the only unattainable numbers given the current position in our game of 
{4,5}.  Player 1 has to choose one of these six numbers.  They obviously don’t want to choose #1 
and if they choose #2, then Player 2 will choose #3 which will leave only #1 left for Player 1.  
The same logic is true if Player 1 were to pick #3, then Player 2 would choose #2 forcing Player 1 
to pick #1.  Therefore we can look at (2, 3) as a clique.  Once one of them is chosen, the other 
player simply choses the other one for the win.  This particular clique will hold for every 
possible game of Sylver Coinage.   

This leaves Player 1 with 6, 7, or 11.  Since 6 + 5 = 11 and 7 + 4 = 11, then if either is 
chosen it eliminates #11 as an option which makes (6, 7) a clique.  If Player 1 chooses either of 
them, then Player 2 will choose the other in order to leave Player 1 with choices of 1, 2, or 3 
which we have already discussed as losing choices for Player 1.  Therefore Player 1 must choose 
#11 which forces Player 2 to choose a number in a clique which will give Player 1 the winning 
strategy.  Given this information, it is clear that Player 2 should not have chosen #5 on their first 
turn.  So let’s analyze a different game where Player 2 chose #6 instead of #5.  We have the 
following chart at this point in the game of {4,6}: 

0 4 8 12 16 20 
1 5 9 13 17 21 
2 6 10 14 18 22 
3 7 11 15 19 23 
 

This new game gives Player 2 the winning strategy as every number belongs to a clique 
meaning that Player 2 has a response for any number Player 1 chooses.  (5, 7), (9, 11), (13, 15), 
(17, 19),... are all cliques at this point in the game.  If Player 1 chooses a value H, then Player 2 
has to look at H-1.  If H-1 is a multiple of 4, then they pick H+2.  If H-1 isn’t a multiple of 4, then 
they pick H-2.  As long as Player 2 continues this strategy for each value that Player 1 picks not 
including #1, #2, or #3, then Player 2 will eventually win the game.  Since we have found a 
winning strategy for Player 2 when Player 1 starts the game with #4, then we see that #4 is a 
bad starting number for Player 1.  This discovery helps us to start deciding some of the answers 
to the following questions: 

Which starting values give Player 1 a winning strategy?  

Which starting values give Player 2 a winning strategy? 
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Theorem – R.L. Hutching 

If A and B are coprime (g = 1) and {𝐴, 𝐵} ≠ {2,3}, then {A,B} gives Player 1 a 
winning strategy. 

In fact, R.L. Hutchings proved a theorem that states:  Given a Sylver Coinage game at 
position {A,B}, Player 1 has a winning strategy if A and B are co-prime and {𝐴, 𝐵} ≠ {2,3}.  
Looking at our example {4,5}, we found that Player 1 had the winning strategy and we can see 
that 4 and 5 are co-prime.  Hutchings proves this by using strategy stealing.  Hutchings looks at 
the largest unattainable number or the Frobenius number, a formula that we will prove later, 
which is 𝐹 = 𝐴 ∗ 𝐵 − 𝐴 − 𝐵.  If this number gives a winning strategy to Player 1 then the 
theorem is true.  If this number is not a winning strategy for Player 1, then that means there is a 
value S, obviously less than F, that is a winning strategy for Player 2 given the game at the point 
{A,B,F}.  In this scenario, Player 1 should steal Player 2’s strategy and choose S instead of F 
giving Player 1 the winning strategy.  This strategy is accomplished because F is attainable given 
{A,B,S} which we will also prove later.  The problem with this theorem is while it does prove 
that there is a winning strategy for Player 1 given co-prime A and B; it does not give an 
algorithm for how to achieve that winning strategy.  But before we delve into this conundrum, 
let’s prove our assertions. 

Sylvester’s Formula (1882) 

If A and B are relatively prime positive integers, then the largest number that is 
not a sum of nonnegative multiples of A and B is:                                                   
(𝐴 − 1)(𝐵 − 1) − 1 = 𝐴 ∗ 𝐵 − 𝐴 − 𝐵. 

First off, we need a general formula for a situation similar to the one presented at the 
beginning of this paper dealing with stamps.  Let A and B be two co-prime integers greater than 
1.  What is the largest number that could not be expressed as a linear combination 𝑚𝐴 + 𝑛𝐵, 
with non-negative integers 𝑚 and 𝑛?  In order to find/prove this formula, we need to use the 
help of The Euclidean Algorithm and one of its’ corollaries:  Suppose A and B are relatively 
prime positive integers, then given an integer k, there exist integers 𝑚 and 𝑛 such that 𝑘 =
𝑚𝐴 + 𝑛𝐵.  From this we can see that  

𝑘 = (𝑚 + 𝐵)𝐴 + (𝑛 − 𝐴)𝐵	𝑜𝑟	𝑘 = (𝑚 − 𝐵)𝐴 + (𝑛 + 𝐴)𝐵 

are also representations for 𝑘.  In fact, all representations of 𝑘 are given by:   

𝑘 = (𝑚 + 𝑗𝐵)𝐴 + (𝑛 − 𝑗𝐴)𝐵 with integer j, 

which we can choose so that our coefficient of A falls within the interval [0, 𝐵 − 1]. 
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 Now that 𝑘 can be uniquely written as 𝑘 = 𝑚𝐴 + 𝑛𝐵 where 0 ≤ 𝑚 ≤ 𝐵 − 1, let’s show 
that 𝑘 is representable only if 𝑛 ≥ 0.  Suppose 𝑘 is representable, then 𝑘 = 𝑗𝐴 + 𝑙𝐵 for some 
nonnegative integers 𝑗 and 𝑙.  If 0 ≤ 𝑗 ≤ 𝐵 − 1 then we are done; otherwise, we subtract 
enough multiples of B from j such that 0 ≤ 𝑚 = 𝑗 − 𝑞𝐵 ≤ 𝐵 − 1.  Then the coefficient 𝑙 has to 
be adjusted to 𝑛 = 𝑙 + 𝑞𝐴, which is positive.  Since 𝑛 has to be positive for a representable 𝑘 
when 0 ≤ 𝑚 ≤ 𝐵 − 1, then this also implies that every integer 𝑘 ≥ 𝐴𝐵 is representable.  

Now we have our foundation to prove that the largest number that cannot be expressed 
by co-prime A & B is 𝐹 = 𝐴 ∗ 𝐵 − 𝐴 − 𝐵.  We have denoted this number F as it is called the 
Frobenius number after mathematician Ferdinand Frobenius and his work on the coin problem.  
Since 𝑘 is representable when 𝑛 ≥ 0 and 0 ≤ 𝑚 ≤ 𝐵 − 1, then we are trying to maximize 𝑚 
and 𝑛 while keeping 𝑘 not representable.  Therefore we make 𝑚 = 𝐵 − 1 and 𝑛 = −1, giving 
us the formula: 

𝑘 = (𝐵 − 1)𝐴 + (−1)𝐵 = 𝐴 ∗ 𝐵 − 𝐴 − 𝐵 

  Theorem – J.J. Sylvester (1882) 

If A and B are relatively prime positive integers, then the number of non-

representable integers less than A*B is E
F
(𝐴 − 1)(𝐵 − 1). 

Now that we have a general formula for the largest unattainable (Frobenius) number 
given co-prime A & B, let’s find a formula for how many unattainable numbers exist in this 
scenario.  First we show that if 𝑘 is not divisible by A or B and is representable, then 𝐴𝐵 − 𝑘 is 
not representable.  Note that 0 < 𝑘 < 𝐴𝐵.  So we suppose that 𝑘 is representable, which 
means 𝑘 = 𝑚𝐴 + 𝑛𝐵 for some nonnegative integers 𝑚 and 𝑛 with 0 < 𝑚 ≤ 𝐵 − 1.  This 
means that 𝐴𝐵 − 𝑘 = 𝐴𝐵 −𝑚𝐴 − 𝑛𝐵 = (𝐵 −𝑚)𝐴 − 𝑛𝐵, which shows us that 𝐴𝐵 − 𝑘 can be 
written as 𝐴𝐵 − 𝑘 = 𝑔𝐴 + ℎ𝐵 where 0 ≤ 𝑔 ≤ 𝐵 − 1 and ℎ < 0.  Since ℎ < 0, then 𝐴𝐵 − 𝑘 is 
not representable.  With this fact, we know that exactly half of the values between 1 and 𝐴𝐵 −
1 are representable, because if 𝑘 is representable then 𝐴𝐵 − 𝑘 is not and vice versa.  Therefore 
since there are 𝐴𝐵 − 𝐴 − 𝐵 + 1 = (𝐴 − 1)(𝐵 − 1) integers between 1 and 𝐴𝐵 − 1 that are 
not divisible by A or B, then the number of non-representable integers given co-prime A and B 

is E
F
(𝐴 − 1)(𝐵 − 1). 

 The last concept we need to prove is that the Frobenius number F is attainable by co-
prime values of A, B, and S where 0 < 𝑆 < 𝐴𝐵.  We just showed that if S is not representable by 
A and B, then 𝐴𝐵 − 𝑆 is representable which means it can be written as 𝐴𝐵 − 𝑆 = 𝑚𝐴 + 𝑛𝐵 
for nonnegative integers 𝑚 and 𝑛.  Rewriting  𝐴𝐵 = 𝑚𝐴 + 𝑛𝐵 + 𝑆, which means we can write 
the Frobenius number as the following: 
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𝐹 = 𝐴𝐵 − 𝐴 − 𝐵 = 𝑚𝐴 + 𝑛𝐵 + 𝑆 − 𝐴 − 𝐵 = (𝑚 − 1)𝐴 + (𝑛 − 1)𝐵 + 𝑆 

which shows that F is attainable by A, B, and S, since 𝑚 and 𝑛 are nonnegative integers.    

  Hutching’s Theorem – Corollaries 

1) If 𝐴 ≥ 5 is a prime number, then {A} gives Player 1 a winning strategy. 
2) If 𝐴 is a composite number not of the form 2K3L, then {A} gives Player 2 a 

winning strategy. 

With this proof we have shown why Hutching’s explanation of his proof using a strategy 
stealing concept does in fact work, however he does not explain how to find the winning 
strategy.  The truth is that no one actually knows how to find this strategy, we just know that 
there is one.  Hutchings did however help us to find some specific facts about Player 1’s starting 
moves.  For instance, using his theorem that Player 1 has a winning strategy if A and B are co-
prime and {𝐴, 𝐵} ≠ {2,3}; we can discover the corollary that if Player 1 starts the game with a 
prime number greater than 3, then Player 1 has a winning strategy because Player 2 has to 
select a number B that would be co-prime to A.  Of course we would again run into the problem 
of how to implement that winning strategy for non-trivial games.  Using this corollary, we can 
produce a second corollary that states that Player 2 would have the winning strategy if Player 1 
starts the game with a composite number not of the form 2K3L, where 𝑥, 𝑦 ≥ 0, because 
Player 2 can now select a prime factor of Player 1’s choice forcing Player 1 to have to pick a co-
prime number to the first two choices.  Using these two corollaries and some gameplay logic, 
we have information on the following openings up to 50: 

Player 1 has a winning strategy if the first value played is: 

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ... 

Player 2 has a winning strategy if the first value played is: 

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 20, 21, 22, 25, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 
49, 50, … 

Values that are unknown as far as who has the winning strategy: 

16, 18, 24, 27, 32, 36, 48, … 

 It should be noted that all unknown values are of the form 2K3L.  It should also be 
noted again that although we know that there is a winning strategy for a player; we don’t 
necessarily know what that strategy says to do unless it is a relatively trivial game.  This would 
be one of the goals for future research: create an algorithm to find the winning value that 
needs to be chosen in order to successfully win the game when it is known that a player has a 
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winning strategy.  The second goal would be to find who has the winning strategy when the 
game begins with one of the unknown values.  This has actually lead to another frustrating 
discovery with Sylver Coinage.  It has been argued that it can be proven that there is a way of 
programming a computer to find the outcome of any starting value, but it is not known how to 
actually create such a code.  Since we have Hutching’s corollaries that tell us what happens for 
most numbers, the main focus for this program is to identify numbers of the form 2K3L.  The 
general outline would like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall also that even if we could produce a viable program for a computer to calculate 
who has the winning strategy, we would still have the problem of how to go about 
implementing such a strategy.  Like Hutching’s theorem, we may know who has the winning 
strategy with optimal play, but no one has found how to determine what the optimal play is for 
any given game.  Even with a specific non-trivial game, it can be nearly impossible to decide 
what is the optimal play.  Your best play is to use these facts to prove to your opponent that 
there is a winning strategy for you and hope that they concede, but don’t let on to the fact that 
you don’t actually know how to implement it.  Good Luck! 

Is A a prime greater than 3? 

Player 1 has the winning 
strategy.  

Is A divisible by such a 
prime? 

Yes No 

Player 2 has the 
winning strategy. 

Is 𝐴 = 𝐴E, 
or 𝐴 = 𝐴F, 
……………… 

or 𝐴 = 𝐴N? 

 

 

Start 

Player 1 has the winning 
strategy.  

Player 2 has the 
winning strategy. 

Yes 

Yes 

No 

No 
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